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We study several diffusively coupled chaotic maps on perideditmensional square lattices. Even and odd
sublattices are updated alternately, introducing an effectelay. As the coupling strength is increased, the
system undergoes a first-order phase transition from a multistable to a synchronized phase. At the transition
point, the largest Lyapunov exponent of the system changes sign contrary to the earlier studies which predicted
the same to be negative. Further increase in coupling strength shows desynchronization where the phase space
splits into two ergodic regions. We argue that the nature of desynchronization transition strongly depends on
the differentiability of the maps.
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Synchronization is observed in a wide class of complex dp=—(ag+bp?+cd’) + DV + n, (1)
systems. Typically, it appears when the range of the correlavhereD >0 is the diffusion constanty(x,t) is a Gaussian
tions inside the system is of the same order as the systemhite noise, anda,b, and ¢ are parameters to model the
size. Few examples of mutual synchronization in complexgrowth and the saturation. Fbr>0, c is irrelevant, and us-
dynamical systems are flashing fireflies, electronic circuitsing a Hopf-Cole transformatiorh=In|¢|, one can identity
and chemical reactiond]. In recent years, synchronization Eg. (1) as the Kardar-Parisi-Zhand<PZ) model [11] with
of spatially extended systems has drawn considerable integdditional saturation terms. Thus the ST is in the universality
est. Particularly, coupled map latticé€BMLs) [2], initially ~ class of “bounded KPZ{bKPZ) model.
introduced as simple models of spatio-temporal chaos, have Note that in the bKPZ language<0 case of Eq(1)
received a great deal of attention as a model of synchroniz&orresponds to the presence of an attractive upper wall. In
tion [3]. It has been realized that two identical chaotic sys-thiS case one can argue th&tis negative at the transition
tems, coupled directly4], or through a common source of POINt, :_;md thus the ST is in the DP_ class.. However, a careful
external random noisgs,6], can achieve complete synchro- analysis[10] reveal§ that for celrtaln choices 'of parame_ters,
nization for strong enough coupling strengths. CMLs withOne can have a highly attractive wall and in this regime,

global coupling can also achieve mutual synchronizafin phase transition can occur discontinuously. In the context of
In all these examples, the transition occurs from an unsynr_lonequmbnum wetting process, such first-order phase tran-

) . . . . sitions (FOPT9 have been observed in severél+1)-
chronized phase in which two replicas evolve InOlependemly(.‘]imensional stochastic models with local interacti¢hg]

to a synchronized phase in which memory of the initial dif- o )
ference is asymptotically lost and then both the systems folcO" trary 1o equmt_)rlum wetting processes whe_r N pha_lse tran-
; . sitions are generically not possibj&3] in one-dimensional
low the same chaotic trajectory. (1D) systems that have short-range interactions between in-
) Wrfaces and substrates. However, to the best of our knowl-
A of the dynamical system has to be negat[@ Then  oqge first-order STs in chaotic, extended systems with short
depending on whethek changes sign at the transition point range interactions are still lacking, although they are known
or before, two different scenarios are possilék In the later {5 exist for globally coupled mapid.4]. In this Rapid Com-
case,A is negative at the transition point and thus any localmuynication we propose to find such a transition.
fluctuation which desynchronizes some lattice sites would We mainly study a single parameter family of chaotic
rapidly be reabsorbed due to lack of any mechanism of inpiecewise linear mapdLMs) which are diffusively coupled
formation propagation. Like the directed percolatidP)  on ad-dimensional square lattice. An effectigelayis in-
process, in this case, nonsynchronized clusters, can nevegoduced dynamically between sublattices by updating them
emerge from already synchronized regions. The synchronizadternately. One of our interests would be to find if, starting
tion transition(ST) is thus expected to be in the universality from a random initial condition, these sublattices synchro-
class of DP. On the contrary, if changes sign at the transi- nize at later times. The answer turns out to be “no,” for both
tion point, sufficiently close to ST, local fluctuations would very high and low diffusion strengths However, for inter-
eventually grow to generate nonsynchronized clusters, evemediatee, synchronization occurs with the suppression of
within the synchronized regions. The growth is, however,spatio-temporal chaos. This synchronized phasetisique
bounded from above by thboundednessf the primitive  absorbing stateof the system and for PLMs the phase
maps. Recently a Langevin equation was introduced by Pikboundary is identical with the stability boundary of the com-
ovsky and Kurthg[9] to model the growth, the saturation, mon fixed point of the CML. The desynchronization also
and the noise, which is generalized later by Mundz andbccurs discontinuously for strong enough couplings as the
Pastor-Satorragl0]. In this model, the natural order param- common fixed point loses stability. To this end we will dis-
eter of synchronizatiop(x, ), defined as the average of ab- cuss the generalizations of the delay-induced STs to other
solute difference between trajectories, satisfies chaotic maps.
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Two main results of this paper can be summarized as
follows. First, an effectivadelayintroduced between sublat-
tices of CMLs can generically enforce synchronization by
suppressing chaos. Second, at the transition point the largest
Lyapunov exponenA of the CML changes sign, contrary to
Eq. (1), which predictsA to be negative at the transition
point of a first-order transition.

The modelConsider a-dimensional hypercubic latticé
of coupled identical map8z), wherez is a real variable at

site rE(il,iz, ...,ig) with i, varying from 1 toL. We define
the evenand odd sublattices(£® and L°, respectively as

-3
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Synchronized Phase

£e’°:{f: > iy=even,odd}, and denotes (y;) as the variable maps defined in Eq5).

of £&(£°). Starting from a random initial configuratiofx;}
and{y;} are updated alternately as
t+1

X =(1- e)f(x:-) + Z—ZE f(y%),

ImaxRe(E;), Re(E,)}

FIG. 1. Phase diagram ie-u plane for the piece-wise linear

<1, we find that,ea=1+1/u and eg
=(u—1)/(2u) which are drawn in the Fig. 1 as a phase

jeNy boundary for the synchronized phase. For simplicity, it is
B assumed here that primitive maps have only one nonzero
y_t»”:(l—e)f(y_t») +— > (), (2)  fixed pointZ'. One can further generalize it to maps with
' ' Zdj’EN; . more fixed points.

where NV is a set ofd-dimensional nearest neighbors E)f

To find out the behavior o close to these transitions we

ande>0 is the coupling strength, can be seen as a diffusiorirst restrict ourselves to one dimension and study a specific
constant. Equivalently, in the first half unit of timg are  single parameter family of maps:

z<1-1/m

updated while keeping; unaltered and in the second half
only y; are updated. We will see later that thlislay, which is
introduced dynamically between sublattices, is responsible
for a complete synchronization of the CML. Note that peri-

f(2) = mZ(m-1),
@)= m(1-2),

z=1-1/m’

©)

odic boundary configuration in ali dimensions are used ThiS piecewise linear mapping §9, 1] onto itself is every-
throughout. where expanding fom> 1, and thus chaotic, with an invari-

Synchronization occurs when the difference betwaen ant density uniform orf0, 1]. A particular example of this
andy; vanishes at all sites ds-. Thus, the order param- family with m=2 is known agent map Note that the fixed

eter of ST can be defined as=(¢') where

point isZ'=m/(m+1).
SynchronizationLet us first discuss the transition from

t— iz t_t 3 . . .
¢ = - =y, (3 the unsynchronized phase(see Fig. ] to the synchronized

and the steady state averlaeée is taken over time and reali
tions. Obviously,¢ vanishes in the synchronized phase andth
in the unsynchronized phasg>0. A trivial synchronized d
phase would correspond to the stable fixed point of the CML
i.e., {z=7'}. For chaotic CML without delay, this state is
linearly unstable. To see this, let us take the Fourier tran
form of the small deviations$z=z-Z". Then, the Fourier

hase. Close to the transition point we takee,— 6 and find
at the system becomes multistablesas 0, i.e., one out of
e large number of steady states is chosen by the CML,
epending on the initial configuration. The delay introduced
here could be the possible source of the multistability. De-
layed differential equationgl5] and CMLs[16] are known
Sto exhibit such behavior. It may be argued that the multista-
bility is extensive, i.e., the number of attractors grow expo-

1 1 e t+1— - t 1 — . . . . .
coefficients oz, evolve aséz; "=Ecdz, with Ex=u(l-€)  nentially with the system size. Thus any statistical average

+R;. Here, we define
w=f'(Z) and Ri=E ki,

has to be taken over a large number of independent realiza-
tions, which restricts us to simulate large systems. We carried

2d 5 out numerical simulations fdr=1024 andm=2.0, 1.5, and
Since the primitive maps are chaotiiy,d >1 and thus find that¢ vanishes discontinuously ag=1-1/m (see Fig.

max(

=

)>1, which proves that a common fixed poifr ~ 3)- To confirm that it is a true first-order transition, not just a

=71 is unstable. The delay introduced in @), however, {ransient effect, we monitor the phase space of every neigh-

can stabilize the common fixed point in a regiep<e
< e,. In this case, the Fourier coefficients of the small devia
tions &'=x—Z and dy;=y;—Z evolve as

boring pair of coordinates a&— 0. For example in Fig. 2 we
demonstrate how the phase space changes iptheplane.
For large 6, the phase space is identical for two different

initial configurationsS; and S,. However, dynamically dif-

o\t m Re o\t ferent shapes are generateddas 0. In practice, no notice-
( ) =] ( ) , (4)  able change is observed in the phase space whem0™*
Yk uRe e+ Re )\ Oy and then suddenly the fixed point=2" =z, appears at=0.

_ N _ Every other pair of neighboring coordinates show similar
wheren=pu(1-¢). Let E; denote the eigenvalues of the ma- changes. In other words, whet=0, we have|z—z.,|>0
trix defined in Eg.(4). From the stability requirements for every realization and thug has a jump ak=e,.
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d=1 3=.01

0 04 2, 08 1 02 05 08 ! FIG. 2. This figure shows how the phase
! space changes -z, plane for two different ini-
1 9 tial configurationsS; andS, asd=ep—€—0. The
s symbol “*” represents the fixed poirt =0.6.
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From Eq.(1), A is expected to be negative at the transi-or a_ with kinklike interfaces separating them. The corre-
tion point of a first-order ST. To check this, we evaludte sponding counterpart of the other sublattice is then attracted
numerically using the standard methddg]. The results for to a_ or a, respectively(see Fig. 4. It will be shown later
the map(5) with m=1.5 and 2.0 are illustrated in Fig. 3. that the width of such a kinkv, diverges as 15 as §— 0.
Clearly, A changes sign exactly af, which suggests that the Thus, stable kinks cannot be generated whé&nO(L™?) and
Langevin equatioril) needs further modification to incorpo- we have¢=a,—a_. Clearly the jump-ing at eg is
rate the first order STs within the bKPZ scenagitio> 0).

DesynchronizationThe synchronized state persists until A= Llujlo!sl—rg(@ = ) =2+ m). @
e=eg, Where phase space splits intwo disconnected er- . )
godic regions. In the new phase B, shown in FiggJandy; On the other hand, for a fixef~= 0, thermodynamically

fluctuate about two different fixed point andy’, corre-  large systems would generate different number of kinks for
sponding to even and odd sublattices, respectively. From Edlifferent initial conditions. Taking the average density of

(2) we have . . . kinks to bep, one can obtain the jump i® at eg as A
X =(1-ef(x) +ef(y), =A(1-pw)+pA, where A is the area bounded by an even
y =(1-eof(y)+ef(X), (6) and an odd kinkithe shaded area shown in Fig. &ince

w~1/y8, A#0 and thus the desynchronization transition is
discontinuous. _
) To see thatv~ 1/V6, let us first calculate the steady state
L (26+1)+(26m+1) profile of a kink which starts at sitk with, sayz.=«_ and

T mA(26+ 1) £ m(45+ 1) Z.1=a,. Using the steady state conditiaii’=27 in Eq. (2),

. o ) . we find thatz,, has two solutionsa_ and
and 6=e-e€g. Thus, depending on the initial configuration,

different parts within a sublattice can either be attractedl,to

which can be solved for the maps defined(% asx =a,
and corresponding’ = a-, where

0.3
0.2

0.1

FIG. 3. The largest Lyapunov exponents(shown as squargs FIG. 4. Typical steady state profiles of the eysnlid line) and
are estimated numerically for map) with m=1.5 and 2.0. Clearly the odd(dashed ling sublattices are shown for coupled tent maps
A changes sign at,, where¢ vanishes discontinuously. with €=0.499.
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_mA(26+1) £ (26m-1)
“T 25+ ) Emds+ 1)

The first solution corresponds ®,,=z. The kink is gener-
ated only when the other solutian,,=« is being chosen
dynamically. Now, takingz., andz.., as initial conditions,
one can obtairz,,,; for i=1 iteratively

<2k+i+1>:< 0 1 >i<zk+l>
Zisiva) \=1 —2c0%6) ) \z4p/’
where =2 tarr(\/é/ eg). For a sitei far from k the solution
of (8) can be approximated to linear order &as, z.;
~a_+A; andz, .1~ a,—A;, whereA;=i%s/2m(m+1). The
width of the kink is thusw=2n, such thatA,=a,-a_.
Clearly,w diverges as 1V6.

Discussion and conclusiomet us first discuss the gener-
alizations of the coupled PLMs of E¢6) to higher dimen-

()

sions. A similar linear analysis would result in the same
phase diagram as shown in Fig. 1. Our numerical simulation

in two and three dimensiorjd 8] verify that both, ST ak,
and the desynchronization transitionegtare discontinuous.

The first-order STs found for the PLMs are quite general
Every other chaotic CMLs we studied in one dimension, for

examplef(2)=4z(1-2), sin(wz), and\27z(1-7%)/2 undergo

a discontinuous transition from a multistable to a synchro
nized phase. Note that the linear stability boundary no longe
represents the phase boundary of ST. In all these cases t
synchronized phase loses stability for strong enough couz,

plings; however, contrary to the coupléent mapsthe de-
synchronization transitions are found to be continupLg.
Interestingly for the power law mag(z)=1-|2z- 1|9, one

can even tune the nature of the desynchronization transition

to be first or second order by tuning the parameteihe
transition turns out to be continuous for>1, where the
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maps are differentiable. Details of these studies will be re-
ported elsewhere.

In conclusion, we show that for a system of diffusively
coupled chaotic maps, an effective delay introduced dynami-
cally between sublattices can enforce synchronization by
suppressing chaos. This synchronization transition which oc-
curs as the system enters from a multistable region to a
single “common fixed point” in phase space turns out to be
discontinuous. For a single parameter family of coupled lin-
ear chaotic maps the phase boundary of the synchronized
phase could be calculated exactly in ahglimension. Nu-
merical studies of several other nonlinear maps suggests that
the discontinuous synchronization transition is a generic fea-
ture of CMLs with delay From the analogy between syn-
chronization transition and nonequilibrium wetting process,
previous studie$10] predicted a first-order phase transition
within the DP regime where the largest Lyapunov exponent
A is negative at the transition point. On the contrary, for the
delay-induced synchronization discussed hetechanges
sign exactly at the transition point. Since the synchronized
Qhase in our model is not chaotic, corresponding synchroni-
Zation transition cannot be modeled by Edj), which as-
sumes stochasticity. It would be of interest to study if .
without the noise term can reproduce the phenomenology
described here.

The delay brings in another interesting feature, namely,
desynchronization, which occurs as the fixed point becomes
unstable and then the even and odd sublattices fluctuate

bout two different common fixed points. Contrary to syn-
fironization, which always occurs discontinuously, desyn-
ronization can occur as a first- or second-order transition.
Numerical study of several mapd8] suggests that the
delay-induced desynchronization transition is continuous for
maps which are differentiable everywhere.

We thank D. Mukamel and E. Levin for fruitful comments
and discussions.
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