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We study several diffusively coupled chaotic maps on periodicd-dimensional square lattices. Even and odd
sublattices are updated alternately, introducing an effectivedelay. As the coupling strength is increased, the
system undergoes a first-order phase transition from a multistable to a synchronized phase. At the transition
point, the largest Lyapunov exponent of the system changes sign contrary to the earlier studies which predicted
the same to be negative. Further increase in coupling strength shows desynchronization where the phase space
splits into two ergodic regions. We argue that the nature of desynchronization transition strongly depends on
the differentiability of the maps.
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Synchronization is observed in a wide class of complex
systems. Typically, it appears when the range of the correla-
tions inside the system is of the same order as the system
size. Few examples of mutual synchronization in complex
dynamical systems are flashing fireflies, electronic circuits,
and chemical reactions[1]. In recent years, synchronization
of spatially extended systems has drawn considerable inter-
est. Particularly, coupled map lattices(CMLs) [2], initially
introduced as simple models of spatio-temporal chaos, have
received a great deal of attention as a model of synchroniza-
tion [3]. It has been realized that two identical chaotic sys-
tems, coupled directly[4], or through a common source of
external random noise[5,6], can achieve complete synchro-
nization for strong enough coupling strengths. CMLs with
global coupling can also achieve mutual synchronization[7].
In all these examples, the transition occurs from an unsyn-
chronized phase in which two replicas evolve independently,
to a synchronized phase in which memory of the initial dif-
ference is asymptotically lost and then both the systems fol-
low the same chaotic trajectory.

In the synchronized phase the largest Lyapunov exponent
L of the dynamical system has to be negative[8]. Then
depending on whetherL changes sign at the transition point
or before, two different scenarios are possible[6]. In the later
case,L is negative at the transition point and thus any local
fluctuation which desynchronizes some lattice sites would
rapidly be reabsorbed due to lack of any mechanism of in-
formation propagation. Like the directed percolation(DP)
process, in this case, nonsynchronized clusters, can never
emerge from already synchronized regions. The synchroniza-
tion transition(ST) is thus expected to be in the universality
class of DP. On the contrary, ifL changes sign at the transi-
tion point, sufficiently close to ST, local fluctuations would
eventually grow to generate nonsynchronized clusters, even
within the synchronized regions. The growth is, however,
bounded from above by theboundednessof the primitive
maps. Recently a Langevin equation was introduced by Pik-
ovsky and Kurths[9] to model the growth, the saturation,
and the noise, which is generalized later by Munõz and
Pastor-Satorras[10]. In this model, the natural order param-
eter of synchronizationfsx,td, defined as the average of ab-
solute difference between trajectories, satisfies

]tf = − saf + bf2 + cf3d + D¹2f + hf, s1d
whereD.0 is the diffusion constant,hsx,td is a Gaussian
white noise, anda,b, and c are parameters to model the
growth and the saturation. Forb.0, c is irrelevant, and us-
ing a Hopf-Cole transformation,h=lnufu, one can identity
Eq. (1) as the Kardar-Parisi-Zhang(KPZ) model [11] with
additional saturation terms. Thus the ST is in the universality
class of “bounded KPZ”(bKPZ) model.

Note that in the bKPZ languageb,0 case of Eq.(1)
corresponds to the presence of an attractive upper wall. In
this case one can argue thatL is negative at the transition
point, and thus the ST is in the DP class. However, a careful
analysis[10] reveals that for certain choices of parameters,
one can have a highly attractive wall and in this regime,
phase transition can occur discontinuously. In the context of
nonequilibrium wetting process, such first-order phase tran-
sitions (FOPTs) have been observed in severals1+1d-
dimensional stochastic models with local interactions[12],
contrary to equilibrium wetting processes where phase tran-
sitions are generically not possible[13] in one-dimensional
(1D) systems that have short-range interactions between in-
terfaces and substrates. However, to the best of our knowl-
edge, first-order STs in chaotic, extended systems with short
range interactions are still lacking, although they are known
to exist for globally coupled maps[14]. In this Rapid Com-
munication we propose to find such a transition.

We mainly study a single parameter family of chaotic
piecewise linear maps(PLMs) which are diffusively coupled
on a d-dimensional square lattice. An effectivedelay is in-
troduced dynamically between sublattices by updating them
alternately. One of our interests would be to find if, starting
from a random initial condition, these sublattices synchro-
nize at later times. The answer turns out to be “no,” for both
very high and low diffusion strengthse. However, for inter-
mediatee, synchronization occurs with the suppression of
spatio-temporal chaos. This synchronized phase is aunique
absorbing stateof the system and for PLMs the phase
boundary is identical with the stability boundary of the com-
mon fixed point of the CML. The desynchronization also
occurs discontinuously for strong enough couplings as the
common fixed point loses stability. To this end we will dis-
cuss the generalizations of the delay-induced STs to other
chaotic maps.

PHYSICAL REVIEW E 70, 045202(R) (2004)

RAPID COMMUNICATIONS

1539-3755/2004/70(4)/045202(4)/$22.50 ©2004 The American Physical Society70 045202-1



Two main results of this paper can be summarized as
follows. First, an effectivedelay introduced between sublat-
tices of CMLs can generically enforce synchronization by
suppressing chaos. Second, at the transition point the largest
Lyapunov exponentL of the CML changes sign, contrary to
Eq. (1), which predictsL to be negative at the transition
point of a first-order transition.

The model.Consider ad-dimensional hypercubic latticeL
of coupled identical mapsfsziWd, whereziW is a real variable at

site iW;si1, i2, . . . ,idd with ik varying from 1 toL. We define
the evenand odd sublattices(Le and Lo, respectively) as

Le,o=hiW : o ik=even,oddj, and denotexiW syiWd as the variable
of Le sLod. Starting from a random initial configuration,hxiWj
and hyiWj are updated alternately as

x
iW
t+1

= s1 − edfsx
iW
td +

e

2d o
jWPNiW

fsyjW
td,

y
iW
t+1

= s1 − edfsy
iW
td +

e

2d o
jWPNiW

fsxjW
t+1d, s2d

whereNiW is a set ofd-dimensional nearest neighbors ofiW,
ande.0 is the coupling strength, can be seen as a diffusion
constant. Equivalently, in the first half unit of timexiW are
updated while keepingyiW unaltered and in the second half
only yiW are updated. We will see later that thisdelay, which is
introduced dynamically between sublattices, is responsible
for a complete synchronization of the CML. Note that peri-
odic boundary configuration in alld dimensions are used
throughout.

Synchronization occurs when the difference betweenxiW

andyiW vanishes at all sites ast→`. Thus, the order param-
eter of ST can be defined asf=kftl where

ft =
1

Ld o
iWPLe

ux
iW
t
− y

iW
tu, s3d

and the steady state average is taken over time and realiza-
tions. Obviously,f vanishes in the synchronized phase and
in the unsynchronized phasef.0. A trivial synchronized
phase would correspond to the stable fixed point of the CML,
i.e., hziW=z*j. For chaotic CML without delay, this state is
linearly unstable. To see this, let us take the Fourier trans-
form of the small deviationsdziW=ziW−z* . Then, the Fourier
coefficients dzkW evolve asdz

kW
t+1

=EkWdz
kW
t
, with Ek=ms1−ed

+RkW. Here, we define

m = f8sz*d and RkW =
em

2d o
rWPN0W

eikW·rW.

Since the primitive maps are chaotic,umu.1 and thus
maxsuEkWud.1, which proves that a common fixed pointhziW

=z*j is unstable. The delay introduced in Eq.(2), however,
can stabilize the common fixed point in a regioneBøe
øeA. In this case, the Fourier coefficients of the small devia-
tions dxiW=xiW−z* anddyiW=yiW−z* evolve as

SdxkW

dykW
Dt+1

= S m̃ RkW

m̃RkW m̃ + R
kW
2DSdxkW

dykW
Dt

, s4d

wherem̃=ms1−ed. Let E
kW
±

denote the eigenvalues of the ma-
trix defined in Eq. (4). From the stability requirements

umaxhResE
kW
+d ,ResE

kW
−dju,1, we find that,eA=1+1/m and eB

=sm−1d / s2md which are drawn in the Fig. 1 as a phase
boundary for the synchronized phase. For simplicity, it is
assumed here that primitive maps have only one nonzero
fixed point z* . One can further generalize it to maps with
more fixed points.

To find out the behavior off close to these transitions we
first restrict ourselves to one dimension and study a specific
single parameter family of maps:

fszd = Hmz/sm− 1d, z, 1 − 1/m

ms1 − zd, zù 1 − 1/m
. s5d

This piecewise linear mapping of[0, 1] onto itself is every-
where expanding form.1, and thus chaotic, with an invari-
ant density uniform on[0, 1]. A particular example of this
family with m=2 is known astent map. Note that the fixed
point is z* =m/ sm+1d.

Synchronization.Let us first discuss the transition from
the unsynchronized phase A(see Fig. 1) to the synchronized
phase. Close to the transition point we takee=eA−d and find
that the system becomes multistable asd→0, i.e., one out of
the large number of steady states is chosen by the CML,
depending on the initial configuration. The delay introduced
here could be the possible source of the multistability. De-
layed differential equations[15] and CMLs[16] are known
to exhibit such behavior. It may be argued that the multista-
bility is extensive, i.e., the number of attractors grow expo-
nentially with the system size. Thus any statistical average
has to be taken over a large number of independent realiza-
tions, which restricts us to simulate large systems. We carried
out numerical simulations forL=1024 andm=2.0, 1.5, and
find thatf vanishes discontinuously ateA=1−1/m (see Fig.
3). To confirm that it is a true first-order transition, not just a
transient effect, we monitor the phase space of every neigh-
boring pair of coordinates asd→0. For example in Fig. 2 we
demonstrate how the phase space changes in thez1-z2 plane.
For larged, the phase space is identical for two different
initial configurationsS1 and S2. However, dynamically dif-
ferent shapes are generated asd→0. In practice, no notice-
able change is observed in the phase space whend,10−4

and then suddenly the fixed pointz1=z* =z2 appears atd=0.
Every other pair of neighboring coordinates show similar
changes. In other words, whend<0, we haveuzi −zi+1u.0
for every realization and thusf has a jump ate=eA.

FIG. 1. Phase diagram ine-m plane for the piece-wise linear
maps defined in Eq.(5).
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From Eq.(1), L is expected to be negative at the transi-
tion point of a first-order ST. To check this, we evaluateL
numerically using the standard methods[17]. The results for
the map(5) with m=1.5 and 2.0 are illustrated in Fig. 3.
Clearly,L changes sign exactly ateA, which suggests that the
Langevin equation(1) needs further modification to incorpo-
rate the first order STs within the bKPZ scenario(b.0).

Desynchronization.The synchronized state persists until
e=eB, where phase space splits intotwo disconnected er-
godic regions. In the new phase B, shown in Fig. 1,xi andyi
fluctuate about two different fixed pointsx* and y* , corre-
sponding to even and odd sublattices, respectively. From Eq.
(2) we have

x* = s1 − edfsx*d + efsy*d,

y* = s1 − edfsy*d + efsx*d, s6d

which can be solved for the maps defined in(5) as x* =a±
and correspondingy* =a7, where

a± =
m2s2d + 1d ± s2dm+ 1d
m2s2d + 1d ± ms4d + 1d

and d=e−eB. Thus, depending on the initial configuration,
different parts within a sublattice can either be attracted toa+

or a− with kinklike interfaces separating them. The corre-
sponding counterpart of the other sublattice is then attracted
to a− or a+ respectively(see Fig. 4). It will be shown later
that the width of such a kinkw, diverges as 1/Îd asd→0.
Thus, stable kinks cannot be generated whend is OsL−2d and
we havef=a+−a−. Clearly the jump-inf at eB is

D = lim
L→`

lim
d→0

sf+ − f−d = 2/sm2 + md. s7d

On the other hand, for a fixedd<0, thermodynamically
large systems would generate different number of kinks for
different initial conditions. Taking the average density of

kinks to be r, one can obtain the jump inf at eB as D̃
=Ds1−rwd+rA, whereA is the area bounded by an even
and an odd kink(the shaded area shown in Fig. 4). Since

w,1/Îd, D̃Þ0 and thus the desynchronization transition is
discontinuous.

To see thatw,1/Îd, let us first calculate the steady state
profile of a kink which starts at sitek with, sayzk=a− and
zk+1=a+. Using the steady state conditionzk

t+1=zk
t in Eq. (2),

we find thatzk+2 has two solutions:a− and

FIG. 2. This figure shows how the phase
space changes inz1-z2 plane for two different ini-
tial configurationsS1 andS2 asd=eA−e→0. The
symbol “*” represents the fixed pointz* =0.6.

FIG. 3. The largest Lyapunov exponentsL (shown as squares)
are estimated numerically for map(5) with m=1.5 and 2.0. Clearly
L changes sign ateA, wheref vanishes discontinuously.

FIG. 4. Typical steady state profiles of the even(solid line) and
the odd(dashed line) sublattices are shown for coupled tent maps
with e=0.499.
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a =
m2s2d + 1d ± s2dm− 1d
m2s2d + 1d ± ms4d + 1d

.

The first solution corresponds tozk+2=zk. The kink is gener-
ated only when the other solutionzk+2=a is being chosen
dynamically. Now, takingzk+1 andzk+2 as initial conditions,
one can obtainzk+2+i for i ù1 iteratively

Szk+i+1

zk+i+2
D = S 0 1

− 1 − 2 cossud
DiSzk+1

zk+2
D , s8d

whereu=2 tan−1sÎd /eBd. For a sitei far from k the solution
of (8) can be approximated to linear order ind as, zk+2i
<a−+Di andzk+2i+1<a+−Di, whereDi = i2d /2msm+1d. The
width of the kink is thusw=2n, such thatDn=a+−a−.
Clearly,w diverges as 1/Îd.

Discussion and conclusion. Let us first discuss the gener-
alizations of the coupled PLMs of Eq.(6) to higher dimen-
sions. A similar linear analysis would result in the same
phase diagram as shown in Fig. 1. Our numerical simulations
in two and three dimensions[18] verify that both, ST ateA
and the desynchronization transition ateB are discontinuous.

The first-order STs found for the PLMs are quite general.
Every other chaotic CMLs we studied in one dimension, for
examplefszd=4zs1−zd, sinspzd, andÎ27zs1−z2d /2 undergo
a discontinuous transition from a multistable to a synchro-
nized phase. Note that the linear stability boundary no longer
represents the phase boundary of ST. In all these cases the
synchronized phase loses stability for strong enough cou-
plings; however, contrary to the coupledtent mapsthe de-
synchronization transitions are found to be continuous[18].
Interestingly for the power law map,fszd=1−u2z−1uq, one
can even tune the nature of the desynchronization transition
to be first or second order by tuning the parameterq. The
transition turns out to be continuous forq.1, where the

maps are differentiable. Details of these studies will be re-
ported elsewhere.

In conclusion, we show that for a system of diffusively
coupled chaotic maps, an effective delay introduced dynami-
cally between sublattices can enforce synchronization by
suppressing chaos. This synchronization transition which oc-
curs as the system enters from a multistable region to a
single “common fixed point” in phase space turns out to be
discontinuous. For a single parameter family of coupled lin-
ear chaotic maps the phase boundary of the synchronized
phase could be calculated exactly in anyd dimension. Nu-
merical studies of several other nonlinear maps suggests that
the discontinuous synchronization transition is a generic fea-
ture of CMLs with delay. From the analogy between syn-
chronization transition and nonequilibrium wetting process,
previous studies[10] predicted a first-order phase transition
within the DP regime where the largest Lyapunov exponent
L is negative at the transition point. On the contrary, for the
delay-induced synchronization discussed here,L changes
sign exactly at the transition point. Since the synchronized
phase in our model is not chaotic, corresponding synchroni-
zation transition cannot be modeled by Eq.(1), which as-
sumes stochasticity. It would be of interest to study if Eq.(1)
without the noise term can reproduce the phenomenology
described here.

The delay brings in another interesting feature, namely,
desynchronization, which occurs as the fixed point becomes
unstable and then the even and odd sublattices fluctuate
about two different common fixed points. Contrary to syn-
chronization, which always occurs discontinuously, desyn-
chronization can occur as a first- or second-order transition.
Numerical study of several maps[18] suggests that the
delay-induced desynchronization transition is continuous for
maps which are differentiable everywhere.

We thank D. Mukamel and E. Levin for fruitful comments
and discussions.
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